Lecture 9

Localization: Places of Production
Localized Industry

I. Sites
II. Places
III. Clusters
IV. Districts
I. Sites

A. Industries
B. Locations
C. Multiples
D. Dispersal
Industries

- **Sectors (Products)**
 - Vehicles: cars, trucks, buses, aircraft
 - Clothing: shoes, women’s, men’s, etc.
 - Electronics: computers, phones, games, etc.

- **Components (parts)**
 - Cars: axles, motors, tires, tailpipes, etc.
 - Clothing: cloth, sewing machines, threat, buttons, etc.

- **General groupings (simplified)**
 - Capital goods vs. consumer goods
 - Capital-intensive vs. labor-intensive
 - Heavy industry vs. high tech
Factories

- Basic production unit
 - Breakthrough of industrial revolution

- Basic locational unit
 - One factory, one site

- Workshops
 - Small production units
 - Craft labor

- Workplaces take different forms in non-manufacturing...
 - Offices, warehouses, etc.
I. Sites

A. Industries
B. Locations
C. Multiples
D. Dispersal
Where to Locate?

- Basic location
 - Placing new factories
- Optimum location?
 - Classic location theory
 - Alfred Weber
Cost Minimization

- Inputs
 - Materials (ore)
 - Energy (power)
 - Labor (cheap or skilled)

- Transport costs
 - Near ports, rail, highways
Spatial Divisions of Labor

- Different industries » different locations
 - Different parts of industries » location pattern/field
- Differing calculus
 - Products
 - Material & energy inputs
 - Labor skills & pay
I. Sites
 A. Industries
 B. Locations
 C. Multiples
 D. Dispersal
One Industry, Many Sites

- Same product, many factories
 - Many firms & competition
 - No firm/factory dominates
 - Many input sources
 - Market areas
 - Limits competition
 - Transport costs & regions
 - National boundaries & champions

Source: Dicken (2003) Figure 11.1
One Industry, Many Parts

- Variety of products
- Many components
 - Different logics of parts
 - Assembly points

Figure 3. Distribution of establishments in the computer, electronic equipment and instruments industries by county, China, 1995. Figure based on four-digit data from the 1985 Industrial Census provided by the State Statistical Bureau, People’s Republic of China. Note: Counties in which the number of establishments is less than 0.06 percent of all computers, electronic equipment and instruments establishments in China are excluded.
Giant Factories & Their Limits

- Why not one giant factory for each product? For the world?
 - River Rouge
 - Detroit 1920
 - Fox Conn
 - Shenzhen, 200
Small Workshops, Repetitive Locations

- Many places, same product
 - Craft production (workshops)
 - Small market areas

- Why market areas?
 - Perishable goods
 - Personal services
 - Local tastes

- Increasingly rare in hard goods (e.g. cars, furniture, cast iron)
I. Sites

A. Industries
B. Locations
C. Multiples
D. Dispersal
Factory Dispersal

- Diminishing constraints on location
 - Less bulk (inputs & outputs)
 - Energy widespread
 - Transport improved
 - Labor surplus

- Self-contained factories

- Greenfield locations
Many Peripheries

- Urban
 - Suburbs & satellites
- National
 - US sunbelt, Mex. North, Japan’s countryside
- Continental
 - So Europe, Ireland, E. Europe
 - Japan to SE Asia
 - US to Mexico, Caribbean
- Global
 - Shift to Asia & within Asia
Limits to Dispersal

- Lack of infrastructure
 - Energy, transport, water
 - (see Part VI)
- Poor quality labor
 - Higher cost
 - (see Part IV)
- Clustering effects
 - (see below)
I. Places

A. Making Place
B. Capital Moves
C. Declining Places
Industry Creates Places

- Capital investment
 - Factories, infrastructure

- Attract suppliers
 - Who build more factories

The playing field does not always preexist the location decision
Labor Influx & Making Cities

- Factories attract labor
- Workers need home
 - Industry built vs. open market
- Workers spend wages & retail business arises
I. Places

A. Making Place
B. Capital Moves
C. Declining Places
New Industrial Geographies

Industry often jumps to entirely new places
- New industries create new places

Notable shifts
- beef vs. pork
- cars vs. carriages/ships
- single-wing aircraft
- semiconductors vs. tubes
- biotech vs. big pharma
Why New Places?

- New conditions of production...
 - Old places = old ways
 - New place = fresh start

- High profits
 - Greater freedom to build in new places (beyond existing infrastructure & cities)
I. Places
A. Making Place
B. Capital Moves
C. Declining Places
Why Places Decline

- Declining industry
 - Obsolete products & tech

- Declining companies
 - Outcompeted by better managers

- Cost
 - Old factories
 - High wages

- Disinvestment & closure
Localized Industry

I. Sites

II. Places

III. Clusters

IV. Districts
III. Clusters

A. Industrial Clusters
B. Transport & Infra.
C. Access & Markets
D. Labor & Capital
E. Clusters & Places
A World of Industrial Clusters

- Cluster = group of factories in one area
- Big factory clusters
 - Pittsburgh steel
 - Louisiana oil & chemicals
- Small factory (workshop) clusters
 - Qiaotou, Zhejiang Province
 - 700 factories, 15 billion buttons
 - Big market with 1,300 button merchants
 - Yiwu = socks
 - Hang Ji = toothbrushes
 - Sheng Zhou = ties
Industrial Clusters of Guangdong

- Foshan = tiles
- Zhongshan = lights, lamps
- West of Pearl River = white goods, TVs
- East of Pearl river = computers
- Northeast = auto plants
A Single-Firm Cluster

- **BASF in Mannheim**
 - Chemical company
 - 36K workers, 250 factories, 8,000 products

- **Advantages**
 - Lower transport costs
 - Direct production links
 - outputs & residuals as inputs
 - (Management oversight)

- **Competitors**
 - Separate divisions & factories
 - High transport costs from China etc.
Why Cluster?

- Economies of agglomeration
 - Collective logic vs. individual calculus

- High costs of clustering
 - Rents (land), taxes, wages
 - Aren’t greenfield sites cheaper?
 - Not if you can’t get the inputs/labor/transport you need
III. Clusters

A. Industrial Clusters
B. Transport & Infra.
C. Access & Markets
D. Labor & Capital
E. Clusters & Places
External transport

- Transportation hubs
 - Airports
 - Ports
 - Rail yards
 - Highway nodes

- See also lecture 11
Shared Infrastructure

- Electricity & Gas
- Water & Sewers
- Phone & Internet
Building reuse
III. Clusters

A. Industrial Clusters
B. Transport & Infra.
C. Access to Markets
D. Labor & Capital
E. Clusters & Places
Market Access

- Access to consumers
 - Market thresholds
- Access to suppliers
 - Variety of inputs
- Access to wholesalers
 - Intermediaries (Lec. 11)

Total distance minimization = lowest total transport cost
Comparison & competition

- Keeps business on its toes
II. Industrial Clusters

A. Clusters
B. Transport & Infra.
C. Access & Markets
D. •Labor & Capital
E. Clusters & Places
Concentration of workers

- Access to workers
 - Attracts more firms

- Access to jobs
 - Attracts more workers
More variety, more skills

- For firms: can find specific labor skills
- For workers: can find right job for skills
Access to capital

- Banks
 - Investment loans
 - Commercial loans

- Venture capital
 - Specialists in new firms
III. Clusters

A. Industrial Clusters
B. Transport & Infra.
C. Access & Markets
D. Labor & Capital
E. Clusters & Places
Clusters Create Bigger Places

- Pittsburgh & steel
- Detroit & cars
- Osaka steel & metals
Making Clusters

- Industrial parks
 - Land + infrastructure + transport
 - Prepared by developers, local governments
- Export zones
 - Common national strategy
- Cities provide the substrate...
 - Urban agglomerations allow industry to cluster
 - E.g. 25,000 factories in Shenzhen, China
Localized Industry

I. Sites
II. Places
III. Clusters
IV. •Districts
Industrial Districts > Clusters

- Beyond agglomeration economies
 - i.e., cost minimization

- External economies of collective action
 - i.e., higher productivity & innovation

Spatial proximity still the critical factor
Examples of Districts

- **Historic**
 - Jewelry (Providence)
 - Guns & clocks (Connecticut River)
 - Fine furniture (Grand Rapids)

- **Current**
 - Wine & tourism (Napa)
 - Hollywood (LA)
 - Fashion garments (Paris & Milan)
 - Electronics (Silicon Valley)
 - Banking (New York, London)
IV. Districts

A. Internal Specialization
B. Startups & Spinoffs
C. Innovation & Learning
D. Culture & Institutions
E. Districts & Places
Internal Division of Labor

- Specialization within an industry
- ‘vertical disintegration’
Economies of specialization

- Specific know-how, equipment, skilled labor

- External sourcing
 - Don’t reinvent the wheel
 - Shared suppliers (economies of scale)
 - Optimal size (economies of scope)

- Shared wholesalers (merchants)
 - Shared auxiliaries (lawyers, bankers, etc.) – Lec. 13
IV. Districts

A. Internal Specialization
B. Startups & Spinoffs
C. Innovation & Learning
D. Culture & Institutions
E. Districts & Places
Startups

- Birth of new firms brings...
 - More specialization (DOL)
 - New innovations
 - New energy (entrepreneurism)
Divide & Conquer

- **Vertical disintegration**
 - Hollywood & decline of the studios
- **Reintegration**
 - Cisco, Oracle and other monsters
- Into the mix
 - Large & small firms

Great Expectations

The valuations of some technology companies are often based on intangibles and projections.

- **Google**
 - Company Value: $192.3 bil.
 - Employees: 10,674
 - Age of Company: 9 years

- **Apple**
 - Company Value: $147.5 bil.
 - Employees: 17,787
 - Age of Company: 31 years

- **Facebook**
 - Company Value: $15 bil.
 - Employees: 300
 - Age of Company: 3 years

- **Right Media**
 - Company Value: $850 mil.
 - Employees: 225
 - Age of Company: 4 years

- **Ning**
 - Company Value: $214 mil.
 - Employees: 42
 - Age of Company: 2 years

Lofty Values

Fast-growing market capitalization is about equal to combined value of Time Warner, Disney and News Corporation.

Source: Bloomberg Financial Markets, the companies
IV. Districts

A. Internal Specialization
B. Startups & Spinoffs
C. •Innovation & Learning
D. Culture & Institutions
E. Districts & Places
Innovative Milieux

- Massing of technical competence
 - Many firms, many capabilities
- Sharing knowledge & know-how
 - Many skilled workers & flow of workers
- Continual interaction
 - Working together - with & for each other

- ‘Secrets of industry are in the air’ - Alfred Marshall

Innovation as a collective process
Learning Regions

- Learning by doing (experience)
- Problem solving
- Upgrading of skills
- Upgrading of equipment

Innovation as learning & doing

German model as SOP
IV. Districts

A. Internal Specialization
B. Startups & Spinoffs
C. Innovation & Learning
D. •Culture & Institutions
E. Districts & Places
Districts Are More than Markets

‘Frameworks of action’
‘Regional worlds of production’

New Institutional Economics & Geography
Local Cultures of Production

- Rules & expectations
- Personal relations & trust
- Shared values & beliefs
- Cooperative competition

Facilitate interaction & innovation
Local Institutions of Coordination

- **Business**
 - Industry/trade associations
 - Business clubs & meetings
 - Regional leaders

- **Government**
 - State & local aid agencies
 - State & local planning
 - Politicians & state-business pacts

- **Labor**
 - Technical schools
 - Temp & labor agencies
 - Unions
IV. Districts

A. Internal Specialization
B. Startups & Spinoffs
C. Innovation & Learning
D. Culture & Institutions
E. •Districts & Places
Hollywood – Before & After
Grow Your Own Silicon Valley?

- Everyone tries, most fail
 - Difficult to create an industrial district
 - More than a university
 - More than an industrial park
 - More than government aid…

Russia sets up its own Silicon Valley
Topic: Russian ‘Silicon Valley’
Universities & Industrial Districts

- Component not cause
 - Research & new tech
 - Train skilled labor
- The Stanford Myth
 - Created Silicon Valley?
 - Or the reverse?