Lecture 8

Localized Industry
Localized Industry

I. Sites
II. Places
III. Clusters
IV. Districts
I. Sites
A. Industries
B. Locations
C. Multiples
D. Dispersal
Industries

- Products
- Sectors (groups)
 - Metals: Steel, aluminum, copper
 - Vehicles: cars, trucks, buses, aircraft
 - Clothing: shoes, women’s, men’s, etc.
 - Electronics: computers, phones, games, etc.
- Categories
 - Capital goods vs. consumer goods
 - Capital-intensive vs. labor-intensive
 - Heavy industry vs. high tech
Spatial divisions of labor

- Different industries, different locations

- Technological bases
 - Products
 - Production methods
 - Inputs
 - Labor
I. Sites

A. Industries
B. Locations
C. Multiples
D. Dispersal
Factories

- Basic production unit
 - Breakthrough of industrial revolution

- Basic locational unit
 - One factory, one site

- Takes different forms in non-manufacturing...
 - Offices, warehouses, etc
 - See other lectures
Where to locate?

- Location decision
 - Firms choose
- Optimum location?
 - Classic location theory
 - Alfred Weber
Cost minimization

- **Input costs**
 - Resources
 - Energy
 - Labor

- **Access & transport**
 - Locate near inputs
 - Locate near good transportation
Energy
Materials (in bulk)

- ‘Heavy’ industry
Transport

- water
- rail
- road
- air
Labor
I. Sites
 A. Industries
 B. Locations
 C. Multiples
 D. Dispersal
One industry, many sites

- Why not one factory per product?
 - Giantism & its limits
 - Entry & competition
 - Product variation
 - Market areas
Giant factories & complexes

- Ford’s dream
- Fox Conn
 - Shenzhen

Hon Hai Precision Industry Co., Shenzhen is a walled factory city of 270,000 Hon Hai (Foxconn) employees. They have everything from a hospital, fire station, swimming pool, athletic field a separate area for the basketball courts and even a bookstore (see pictures below). Besides Apple iPods and iPhones, Hon Hai workers/residents make Dell and Hewlett Packard PCs, Motorola and Nokia cell phones, Sony PlayStation 2 and PSP and the Nintendo Wii. It’s a nice place to live and work.
A single-firm cluster

- BASF in Mannheim
 - Chemical company
 - 36K workers, 250 factories, 8,000 products

- Advantages
 - Lower transport costs
 - Direct production links
 - outputs & residuals as inputs
 - (Management oversight)

- Competitors
 - Separate divisions & factories
 - High transport costs from China etc.
Competitive locations

- Many factories/firms
- From different bases
 - National champions
 - Regional strengths
 - Product variations

Figure 10: Automobile production in Europe
Source: Dicken (2003) Figure 11.1
Repetitive location

- Many factories, same product
 - Market areas
 - Local, regional, national, etc

- Why market areas?
 - Perishable goods
 - Personal services
 - Local tastes
 - National boundaries

Berkeley bakeries

- Increasingly rare in hard goods
 (e.g. cars, furniture, cast iron)
I. Sites
A. Industries
B. Locations
C. Multiples
D. Dispersal
Factory dispersal

- Diminishing constraints on location
 - Less bulk (inputs & outputs)
 - Energy widespread
 - Transport improved
 - Labor surplus

- Greenfield locations
Many peripheries

- Urban
 - Suburbs & satellites
- National
 - US sunbelt, Mex. North, Japan’s countryside
- Continental
 - So Europe, Ireland, E. Europe
 - Japan to SE Asia
 - US to Mexico, Caribbean
- Global
 - Shift to Asia & within Asia
Limits to dispersal

- Lack of infrastructure
 - Energy, transport, water
 - (see also Part V)
- Poor quality labor
 - Higher cost
 - (see Part IV)
- Clustering effects
 - (see below)
I. Places
 A. Expansion
 B. Making Place
 C. Capital Moves
 D. Decline
Industry expands...

- Growth of an industry
 - Output
 - Inputs (supplies)
 - Labor (jobs)
 - Factories
 - Firms

- New industries
 - Etc etc.

- *Industrial geography is NOT chess*
 - Pieces & board grow
I. Places

A. Expansion

B. Making Place

C. Capital Moves

D. Decline
Growing industries create places

- Invest capital
 - Build factory, infrastructure

- Attract workers
 - Who live nearby

- Attract suppliers
 - Who build more factories

- Spending multipliers
 - Money circulates locally
I. Places

A. Expansion
B. Making Place
C. Capital Moves
D. Decline
New industrial geographies

- New industries create new places
 - “New industrial spaces”
Why New Places?

- New conditions of production...
 - Old places = old ways
 - New place = fresh start

- Notable shifts
 - beef v. pork
 - semiconductors v tubes
 - biotech v pharma
How can industry afford new places?

- Lower costs of land & labor
 - Logic of dispersal
 - But ... higher costs of transport, infrastructure

- Higher profits
 - Greater freedom of action
 - State aid (roads, water, etc.)

Hence, industry often ‘leapfrogs’ over existing places
I. Places

A. Expansion
B. Making Place
C. Capital Moves
D. Decline
Passing of old places

- **Locations ‘sticky’**
 - Fixed capital
 - Labor force
 - Infrastructure
 - Habit

- **Old industrial places**
 - Stay the same
 - Inevitably decline
Why old places decline

- Costs
 - Old capital
 - High wages
- Competition
 - Obsolete products & tech
 - Bad management
- Disinvestment
 - Slow decline
- Closure
Localized Industry

I. Sites
II. Places
III. Clusters
IV. Districts
III. Clusters

A. • Industrial Clusters
B. Transport & Infra.
C. Access & Markets
D. Labor & Capital
E. Clusters & Places
A World of Industrial Clusters

- Geographic concentrations of factories
- Big factories
 - Pittsburgh steel
 - Louisiana oil & chemicals
- Small factories (workshops)
 - Qiaotou, Zhejiang Province
 - 700 factories, 15 billion buttons
 - Big market with 1,300 button merchants
 - Yiwu = socks
 - Hang Ji = toothbrushes
 - Sheng Zhou = ties
Industrial clusters of Guangdong

- Foshan = tiles
- Zhongshan = lights, lamps
- West of Pearl River = white goods, TVs
- East of Pearl river = computers
- Northeast = 3 Japanese auto plants
Why not disperse?

- High costs of clustering
 - Rents (land), taxes, wages
 - Aren’t greenfield sites cheaper?
 - *Not necessarily*

- Economies of agglomeration

 Collective logic vs. individual calculus

 - Transport hubs (external trade)
 - Shared infrastructure (buildings, roads, water, etc)
 - Access to other factories (internal trade)
 - Labor pools (supply of workers)
 - Capital pools (finance)
 - Concentrations of demand (output markets)
III. Clusters

A. Industrial Clusters
B. Transport & Infra.
C. Access & Markets
D. Labor & Capital
E. Clusters & Places
External transport

- Transportation hubs
 - Airports
 - Ports
 - Rail yards
 - Highway nodes

- See also lecture 10
Shared Infrastructure

- Electricity & Gas
- Water & Sewers
- Phone & Internet
Building reuse
III. Clusters

A. Industrial Clusters
B. Transport & Infra.
C. Access & Markets
D. Labor & Capital
E. Clusters & Places
Access to many firms

- All buyers & suppliers
 = Total distance minimization
 i.e., lowest transportation cost overall
Market access

- Maximize access to buyers/consumers
- Market thresholds
- Merchant intermediaries
Comparison & competition

- Keeps business on its toes
II. Industrial Clusters

A. Clusters
B. Transport & Infra.
C. Access & Markets
D. • Labor & Capital
E. Clusters & Places
Concentration of workers

- Access to workers
 - Attracts more firms

- Access to jobs
 - Attracts more workers
More variety, more skills

- For firms: can find specific labor skills
- For workers: can find right job for skills
Access to capital

- Bank capital
 - Specialists in an industry
 - Specialists in capital markets

- Venture capital
 - Specialists in new firms
III. Clusters

A. Industrial Clusters
B. Transport & Infra.
C. Access & Markets
D. Labor & Capital
E. •Clusters & Places
Clusters Create Bigger Places

- Pittsburgh & steel
- Detroit & cars
- Osaka steel & metals
- Silicon Valley & electronics
Hollywood - Before
Hollywood - after
Making clusters

- Industrial parks
 - Land, infrastructure, transport, proximity

- Seeding clusters
 - Popular local strategy
 - Often does not work
Localized Industry

I. Sites
II. Places
III. Clusters
IV. • Districts
IV. Districts

A. Districts v. Clusters
B. Internal Specialization
C. Startups & Spinoffs
D. Innovation & Learning
E. Institutions
Industrial Districts

- Beyond agglomeration economies
 - More than access & sharing

- External economies
 - Specialization
 - Spinoffs
 - Innovation
 - Institutions
Industrial Districts

- **Historic**
 - Jewelry (Providence)
 - Guns & clocks (Connecticut Rivr)
 - Fine furniture (Grand Rapids)
 - Fashion garments (Paris)

- **Current**
 - Wine & tourism (Napa)
 - Movies & Garments (LA)
 - Electronics (Silicon Valley)
 - Banking (New York, London)
IV. Districts

A. Districts v. Clusters
B. Internal Specialization
C. Startups & Spinoffs
D. Innovation & Learning
E. Institutions
Intense specialization

Figure 1: The California Wine Cluster
Auxiliary functions

- Financiers
- Attorneys
- Accountants

see also Part IV of course
Economies of specialization

- Specialization *within* an industry
 - Detail division of labor

- Advantages of specialization
 - Knowledge, skills, equipment

- Economies of external sourcing
 - Don’t reinvent the wheel in-house
 - Economies of scope
IV. Districts

A. Districts vs. Clusters
B. Internal Specialization
C. • Startups & Spinoffs
D. Innovation & Learning
E. Institutions
Startups

- Birth of new firms

- Why new firms?
 - New technology
 - New market niches
 - Entrepreneurial workers
 - Risk capital
Effect of startups

- Expand division of labor
 - More specialists
 - More external economies

- Move into new fields
 - Innovation (see below)
Spinoffs & buyouts

- Many start-ups are spinoffs from large firms
 - Investment banks & hedge funds in New York
- ‘Vertical disintegration’ within a district
 - Hollywood & decline of the studios
- Reconcentration by acquisition
 - Cisco, Oracle and other monsters
The Great & the Small

- Districts mix large & small firms
IV. Districts

A. Districts vs. Clusters
B. Internal Specialization
C. Startups & Spinoffs
D. Innovation & Learning
E. Institutions
Dynamism of industrial districts

- Beyond cost savings (ext. economies)
- Development of technology
 - New ways of working

See also lecture 12
Innovative milieux

- Massing of technical competence
 - Firms & skilled labor
- Sharing knowledge & skill
 - Movement of workers
- Technical interaction
 - Problem solving

- ‘Secrets of industry are in the air’ - Alfred Marshall

Innovation as complex labor process
Learning Regions

- Learning by doing (experience)
- Problem solving
- Upgrading of labor skills
- Upgrading of firm competence

Innovation as learning
IV. Districts

A. Districts vs. Clusters
B. Internal Specialization
C. Startups & Spinoffs
D. Innovation & Learning
E. •Institutions
Districts are not pure market economies

‘Frameworks of action’
‘Regional worlds of production’

New Institutional Economics & Geography
Local cultures of production

- Rules & expectations
- Personal relations & trust
- Shared values & beliefs
- Cooperative competition
Business coordination

- Industry/trade associations
 - Silicon Valley Manufacturers Group, Alabama Automobile Manuf. Association, Maritime Association, etc.

- Business clubs & meetings
 - MacWorld, Oracle Open World, etc.

- Regional leaders
 - David Packard, Andrew Carnegie, Paul Allen, Henry Ford, etc.
Government

- Government regulation
 - E.g., Incorporation laws
- Government aid
 - E.g. Stem cell research
- Local government agencies
 - E.g. San Jose
- Politicians & alliances
Labor institutions

- Specialized schools
- Labor agencies
- Labor unions & councils
What about universities?

- New science & technology
 - Sometimes provide usable products

- Train highly skilled labor
 - But only part of an industrial cluster...
The myth of Stanford & Silicon Valley

- Fred Terman, Hewlett-Packard & all that
DIU Silicon Valley?

- Everyone tries, most fail
- Very difficult to create an industrial district
- Lots of wasted money on industrial parks, technopolis policies, etc.